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Abstract. Let H∞ denote the Banach algebra of all bounded analytic functions on the

open unit disc and denote by B(H∞) the Banach space of all bounded linear operators from

H∞ into itself. We prove that the Bishop-Phelps-Bollobás property holds for B(H∞). As an

application to our approach, we prove that the Bishop-Phelps-Bollobás property also holds

for operator ideals of B(H∞).
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1. Introduction

The main objective of this paper is to connect two classical concepts of independent interest:

the Bishop-Phelps-Bollobás theorem and H∞, the algebra of all bounded analytic functions

on the open unit disc D in the complex plane C. More specifically, we prove that the Banach

space of bounded linear operators from H∞ into itself satisfies the Bishop-Phelps-Bollobás

property (see Theorem 1.4). Here, our formulation of the Bishop-Phelps-Bollobás property

follows the construction of Acosta, Aron, Garćıa, and Maestre [2] (see Definition 1.3).

Needless to say that H∞ plays a distinguished role in the general theory of Banach spaces

(cf. [11, 29]). Besides, the theory of bounded analytic functions in the context of the Bishop

and Phelps theorem [8] also appears to fit appropriately as Lomonosov [27] discovered that

there exists a complex Banach space X and a closed bounded convex subset S of X with

the property that the set of support points of S is empty. In this case, X is the pred-

ual of H∞
0 , where H∞

0 is the Banach space of all functions in H∞ vanishing at the origin.

Lomonosov’s counterexample is related to the answer of Bishop and Phelps to the question

of Klee [25]. From this point of view, our result perhaps complements the existing theories of

Bishop-Phelps-Bollobás property, notably in the setting of Banach spaces of bounded analytic
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functions (also see the remark on Asplund spaces and follow-up questions at the end of this

paper).

As usual, we treat H∞ as the commutative unital Banach algebra equipped with the supre-

mum norm ∥ · ∥∞, that is,

H∞ = {f ∈ Hol(D) : ∥f∥∞ := sup
z∈D

|f(z)| <∞}.

This space (also commonly denoted by H∞(D)) is one of the most important commutative

Banach algebras encountered in functional analysis and harmonic analysis. Indeed, the theory

of bounded analytic functions is an active research area by itself, and, even more, this lays

some foundations for several research areas. Where, on the other hand, the Bishop-Phelps-

Bollobás theorem (see Theorem 1.2 below) is one of the most powerful and useful results in

the theory of Banach spaces (especially in the approximation theory for Banach spaces). The

genesis of Bishop-Phelps-Bollobás theorem in fact goes back to the seminal work of Bishop

and Phelps [8] in 1961. As it is evident in the statement below, the power of the Bishop and

Phelps theorem lies in its simplicity.

Theorem 1.1 (Bishop and Phelps). The set of norm attaining functionals on a Banach space

X is norm dense in its dual space X∗.

Throughout this paper, all Banach spaces considered will be over the complex field (as

our primary interest is in the Banach space H∞ over C). We recall that a bounded linear

operator T : X → Y between Banach spaces X and Y (in short, T ∈ B(X,Y ) and T ∈ B(X)

if Y = X) is norm attaining if there exists a unit vector x0 ∈ SX such that

∥T∥B(X,Y ) = ∥Tx0∥Y ,

where SX denotes the standard unit sphere of X.

In 1970, Béla Bollobás [9] proved a sharper version (or a “quantitative version”, cf. [5,

page 6086]) of Bishop and Phelps theorem by offering a simultaneous approximation of almost

norm-attaining functionals by norm-attaining functionals and almost norm-attainment points

by norm-attainment points. Bollobás’ result is popularly known as the Bishop-Phelps-Bollobás

theorem [12, Corollary 3.3].

Theorem 1.2 (Bishop-Phelps-Bollobás). Let X be a Banach space, ϵ ∈ (0, 1), and let f ∈
SX∗. Suppose

|f(x)| ≥ 1− ϵ,

for some x ∈ SX . Then there exist g ∈ SX∗ and y ∈ SX such that

(1) |g(y)| = 1,

(2) ∥x− y∥ ≤
√
2ϵ, and

(3) ∥f − g∥ ≤
√
2ϵ.

Note in particular that the set of norm attaining linear functionals on X is dense in X∗.

Therefore, the Bishop-Phelps-Bollobás theorem recovers the classical Bishop and Phelps the-

orem (see Theorem 1.1). We refer the reader to Aron and Lomonosov [6] for a rapid but
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excellent survey on Bishop-Phelps-Bollobás theorem, its applications, and relevant connec-

tions (also see the survey by Acosta [1]).

It is now natural to ask if a result like Bishop-Phelps-Bollobás theorem holds for spaces

of bounded linear operators between Banach spaces (however, see [26] for counterexamples).

Evidently, in order to answer such a question, one first needs to formulate an appropriate

approximation problem for Banach spaces. Thanks to Acosta, Aron, Garćıa, and Maestre [2,

Definition 1.1] for the following formulation of Bishop-Phelps-Bollobás property for B(X,Y ),

where X and Y are Banach spaces:

Definition 1.3 (Acosta, Aron, Garćıa, and Maestre). We say that B(X,Y ) (or simply B(X)

if X = Y ) satisfies the Bishop-Phelps-Bollobás property if for ϵ > 0 there exist β(ϵ) > 0 and

γ(ϵ) > 0 with that limt→0 β(t) = 0 such that for all T ∈ SB(X,Y ), if x ∈ SX such that

∥Tx∥ > 1− γ,

then there exist y ∈ SX and N ∈ SB(X,Y ) such that

(1) ∥Ny∥ = 1,

(2) ∥x− y∥ < β, and

(3) ∥T −N∥ < ϵ.

There are many examples of B(X,Y ) that satisfy the Bishop-Phelps-Bollobás property.

For instance, Banach spaces X and Y satisfying property β in the sense of Lindenstrauss

[2, 26] (also see [5, 13]), L1(µ) spaces for σ-finite measures µ, C(K) spaces, finite-dimensional

spaces [2], certain Banach spaces of holomorphic functions [3, 24], spaces related to compact

operators [16], Asplund spaces [4, 12], etc.

The main contribution of this paper is to demonstrate that the concept of Bishop-Phelps-

Bollobás property of simultaneous approximations (in the sense of Definition 1.3 and following

the classical construction of Bishop, Phelps, and Bollobás) fits perfectly in the framework of

bounded analytic functions. This also includes specific values of the functions β and γ in

Definition 1.3. More specifically:

Theorem 1.4 (Main result). B(H∞) satisfies the Bishop-Phelps-Bollobás property with

β(ϵ) = 2ϵ
7
and γ(ϵ) = 1

2

(
ϵ
7

)2
, ϵ > 0.

The proof of the above result uses a Urysohn-type lemma for H∞ (see Lemma 2.1), which

we believe to be of independent interest. Although the statement of our lemma is conceptually

similar to that of [12, Lemma 2.5] (also see [24, Lemma 3]), the proof, as one would expect,

uses more analytic machinery. Indeed, in the proof of this lemma (as well as the main theorem

of this paper), we exploit the algebraic and analytic structure of the maximal ideal space of

H∞. On the other hand, like [12, 24], we also use the idea of Stolz type regions. In Section

2, we prove our variant of the Urysohn-type lemma for H∞, which we use to prove the main

theorem in Section 3.

Finally, in Section 4 we conclude this paper with the Bishop-Phelps-Bollobás property for

operator ideals of B(H∞), outline some future directions of research on this topic, and some

remarks concerning Asplund spaces.
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2. A Urysohn-type lemma for H∞

The aim of this section is to prove a Urysohn-type lemma in the setting of bounded analytic

functions. We start by recalling some of the basic facts from commutative Banach algebras

[15].

Let A be a commutative Banach algebra with unit. Let us denote by M(A) the maximal

ideal space of A. Note that M(A) is the set of all nonzero multiplicative linear functionals

on A. Since A is unital, it follows that

∥φ∥A∗ = 1 (φ ∈ M(A)),

that is, M(A) is embedded into the unit sphere of A∗. Then, by the Banach–Alaoglu theorem,

M(A) is a compact Hausdorff space in the weak-∗ topology. If we denote by C(M(A)) the

algebra of continuous functions on M(A) with the supremum norm, then the Gelfand map

Γ : A→ C(M(A)) is a contractive homomorphism of Banach algebras, where

Γ(f) = f̂ ,

and

f̂(φ) = φ(f),

for all f ∈ A and φ ∈ M(A). Suppose, in addition, that A is an algebra of complex-valued

continuous functions on a compact Hausdorff space Ω that separates points of Ω and contains

constant functions. Then a subset C ⊆ Ω is called a boundary for A if

sup
x∈Ω

|f(x)| = max
x∈C

|f(x)|,

for all f ∈ A. The Šilov boundary [21, page 173] for A, denoted by ∂SA, is the smallest closed

boundary for A, that is,

∂SA =
⋂

{C : C is a closed boundary for A}.

In other words, ∂SA is the smallest closed subset of M(A) on which every f̂ ∈ Γ(A) attains

its maximum modulus. Now we turn to the unital commutative Banach algebra H∞ [21,

Chapter 10]. In this case

(2.1) ∥f∥∞ = ∥f̂∥∞ = sup
φ∈M(H∞)

|f̂(φ)|,

for all f ∈ H∞, that is, Γ an isometric isomorphism from H∞ into C(M(H∞)). Now we use

the Gelfand map Γ : H∞ → C(M(H∞)) to identify H∞ with

Ĥ∞ := Γ(H∞),

Note that Ĥ∞ is a uniformly closed subalgebra of C(M(H∞)) (that is, Ĥ∞ contains constant

functions and separates the points [21]).

Finally, recall that H∞ can be identified with a closed subalgebra of L∞ (via radial limits),

where L∞ denotes the von Neumann algebra of all essentially bounded measurable complex-

valued functions on the unit circle T. Denote by H̃∞ the copy of H∞ in L∞. Recall that

H̃∞ = L∞ ∩ H̃2,
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where H̃2 ⊆ L2 is the Hardy space on the unit circle T. In view of the above identification,

we denote by φ̃ ∈ H̃∞ the function corresponding to φ ∈ H∞. This point of view is useful in

identifying the Šilov boundary of H∞. More specifically (see [21, page 174]), the map

τ(φ̃) = φ̃|H∞ = φ (φ̃ ∈ M(L∞)),

defines a homeomorphism τ : M(L∞) → M(H∞), and

(2.2) τ(M(L∞)) = ∂SH
∞.

Before proceeding to the Urysohn-type lemma, we record some observations: Let f be an

analytic function on D. We claim that ∥f∥∞ < 1 if and only if |φ(f)| < 1 for all φ ∈ M(H∞).

Indeed, if ∥f∥∞ < 1, then ∥f̂∥∞ = ∥f∥∞ < 1, and hence (or, see (2.1))

∥f̂∥∞ = sup
φ∈M(H∞)

|f̂(φ)| = sup
φ∈M(H∞)

|φ(f)|,

implies that |φ(f)| < 1 for all φ ∈ M(H∞). To prove the converse direction, assume that

|φ(f)| < 1 for all φ ∈ M(H∞). Assume, if possible, that ∥f∥∞ = 1. Since supz∈D |f(z)| = 1,

there exists a sequence {zn} ⊆ D such that |f(zn)| → 1. Let

S := {evzn : zn ∈ D}.

Here, evz ∈ M(H∞), z ∈ D, is the evaluation map evz(g) = g(z) for all g ∈ H∞. Clearly,

S ⊆ M(H∞). Now, compactness of M(H∞) yields a limit point φ ∈ M(H∞) of S. Therefore

φ(f) = lim
n∈U

evzn(f) = lim
n∈U

f(zn),

where U is a free ultrafilter of N. Hence, |φ(f)| = lim
n∈U

|f(zn)| = 1. This contradiction

completes the proof of the claim.

The following assertion will be useful in what follows: Let f be an analytic function on D
satisfying |φ(f)| < 1 for every φ ∈ M(H∞) (equivalently, ∥f∥∞ < 1 by the above observa-

tion). Then

(2.3) (ψ ◦ f̂)(φ) = ψ̂ ◦ f(φ),

for all ψ ∈ H∞, and for all φ ∈ M(H∞). Since φ is multiplicative, we have φ(fn) = φ(f)n

for all n ≥ 0. Let ψ ∈ H∞, and suppose

ψ(z) =
∞∑
n=0

anz
n (z ∈ D).
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With these assumptions, the series
∑∞

n=0 anf
n converges in the norm ∥ · ∥∞. Then

(ψ ◦ f̂)(φ) = ψ(φ(f))

=
∞∑
n=0

an(φ(f))
n

=
∞∑
n=0

anφ(f
n)

= φ
( ∞∑
n=0

anf
n
)

= φ(ψ ◦ f)

= ψ̂ ◦ f(φ),

completes the verification of (2.3). With this observation and preliminaries in place, we are

ready for the Urysohn-type lemma. As noted before, our analytic variant of the Urysohn-type

lemma seems to be of independent interest.

Lemma 2.1. Let U be an open subset of M(H∞). Then for each ϵ ∈ (0, 1) and φ0 ∈
U ∩ ∂SH∞, there exists ψ̂ ∈ Ĥ∞ such that

(1) ∥ψ̂∥ = ψ̂(φ0) = 1,

(2) sup{|ψ̂(φ)| : φ ∈ ∂SH
∞ \ U} < ϵ, and

(3) |ψ̂(φ)|+ (1− ϵ)|1− ψ̂(φ)| ≤ 1 for all φ ∈ M(H∞).

Proof. We consider the Stolz region Ωϵ defined by

Ωϵ := {z ∈ C : |z|+ (1− ϵ)|1− z| ≤ 1}.

Note that 0 and 1 are in Ωϵ, and there exists a homeomorphism ψϵ : D → Ωϵ [30, Theorem

14.8, 14.19] such that

(1) ψϵ|D is a conformal mapping onto the interior of Ωϵ,

(2) ψϵ(1) = 1, and

(3) ψϵ(0) = 0.

Also observe that ϵ2D ⊆ Ωϵ. Since 0 ∈ ψϵ
−1(ϵ2D) and ψϵ

−1(ϵ2D) is an open set, there exists

δ > 0 such that δ < ϵ and

δD ⊆ ψϵ
−1(ϵ2D).(2.4)

Choose ϵ′ > 0 such that 0 < ϵ′ < δ < ϵ. We claim that there exist f1 ∈ H∞(D) such that

|φ0(f1)| = 1 and

f̂1(∂SH
∞ \ U) ⊆ ϵ′D.

We know that ∂SH
∞ is a compact Hausdorff totally disconnected topological space (in fact,

[19, Theorem 3.2] implies that ∂SH
∞ is extremely disconnected), and hence the topology of
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∂SH
∞ is generated by clopen sets. Consequently, there exists a clopen set V ⊆ U ∩ ∂SH∞

such that φ0 ∈ V . In view of (2.2) (or the theorem in [21, Page 174]), the map

τ(φ̃) = φ̃|H∞ = φ (φ̃ ∈ M(L∞)),

defines an onto homeomorphism τ : M(L∞) → ∂SH
∞ ⊆ M(H∞). Therefore, τ−1(V ) is

clopen in M(L∞), and hence there exists a measurable set E ⊆ T (cf. the corollary in [21,

Page 170]) such that

τ−1(V ) := {φ̃ ∈ M(L∞) : χ̂E(φ̃) = 1}.
Now we proceed as in the proof of the theorem in [21, Page 174]. Let u be the harmonic

extension of χE to D and v be the harmonic conjugate of u. Set

f = eu−1+iv ∈ H∞.

Identifying f with F ∈ L∞, it follows that

|F̂ (φ̃)| = eχ̂E(φ̃)−1 (φ̃ ∈ M(L∞)).

In other words

|F̂ (φ̃)| =

{
1 if φ̃ ∈ τ−1(V )

1/e if φ̃ ∈ M(L∞) \ τ−1(V ).

By using the identification H∞ with L∞ ∩ H̃2, we have

F̂ ◦ τ−1(φ) = τ−1(φ)(F )

= φ̃(F )

= φ(f)

= f̂(φ),

for all φ ∈ ∂SH
∞. Hence

|f̂(φ)| =

{
1 if φ ∈ V

1/e if φ ∈ ∂SH
∞ \ V.

Clearly, for ϵ′ > 0, there exists n0 ∈ N such that

e−n < ϵ′ (n ≥ n0).

Define

f1 = fn0 .

Then

f1(∂S \ U) ⊆ ϵ′D,
and

|φ0(f1)| = 1.

If φ0(f1) = α for some α ∈ T, then consider f2 = ᾱf1. Therefore, φ0(f2) = 1, ∥f2∥ = ∥f̂2∥ = 1,

and

(2.5) f̂2(∂SH
∞ \ U) ⊆ ϵ′D.
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We now claim that ψ̂ ∈ Ĥ∞, where

ψ̂ := ψϵ ◦ f̂2.
Since ∥f̂2∥ = 1, we have |φ(f2)| ≤ 1 for all φ ∈ M(H∞). Let A ⊆ M(H∞) such that

|η(f2)| = 1 (η ∈ A).

For each n ≥ 1, define

hn =
n

n+ 1
f2.

Then

|η(hn)| =
∣∣∣∣ n

n+ 1
η(f2)

∣∣∣∣
=

n

n+ 1

< 1,

for all η ∈ A ⊆ M(H∞), and

|φ(hn)| < 1 (φ ∈ M(H∞) \ A).

Hence

(ψϵ ◦ ĥn)(φ) = ̂(ψϵ ◦ hn)(φ) (n ≥ 1).

Since ψϵ is uniform continuous on D, for every ξ > 0, there exists γ > 0 such that

|ψϵ(z)− ψϵ(w)| <
ξ

2
(z, w ∈ D, |z − w| < γ).

Pick a natural number N such that 1
n+1

< γ for all n ≥ N . Then, for each n ≥ N , we have

|(ψϵ ◦ f̂2)(φ)− ψ̂ϵ ◦ f2(φ)| ≤ |(ψϵ ◦ f̂2)(φ)− (ψϵ ◦ ĥn)(φ)|+ |(ψϵ ◦ ĥn)(φ)− ψ̂ϵ ◦ f2(φ)|

=

∣∣∣∣ψϵ(φ(f2))− ψϵ

(
n

n+ 1
φ(f2)

)∣∣∣∣+ |(ψ̂ϵ ◦ hn − ψ̂ϵ ◦ f2)(φ)|

<
ξ

2
+ |(ψ̂ϵ ◦ hn − ψ̂ϵ ◦ f2)(φ)|

≤ ξ

2
+ ∥ψϵ ◦ hn − ψϵ ◦ f2∥∥φ∥,

where on the other hand

∥ψϵ ◦ hn − ψϵ ◦ f2∥ = sup
z∈D

|ψϵ(hnz)− ψϵ(f2z)|

= sup
z∈D

∣∣∣∣ψϵ

(
n

n+ 1
f2(z)

)
− ψϵ(f2(z))

∣∣∣∣
<
ξ

2
.

This finally implies that

|(ψϵ ◦ f̂2)(φ)− ̂(ψϵ ◦ f2)(φ)| < ξ.
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Thus we obtain

(ψϵ ◦ f̂2)(φ) = ̂(ψϵ ◦ f2)(φ) (φ ∈ M(H∞)),

and hence

ψ̂ = ψϵ ◦ f̂2 = ψ̂ϵ ◦ f2 ∈ Ĥ∞.

This proves the claim. Now, since φ0(f2) = 1 and ψϵ(1) = 1, it follows that

ψ̂(φ0) = (ψϵ ◦ f̂2)(φ0) = ψϵ(φ0(f2)) = ψϵ(1) = 1.

Moreover

∥ψ̂∥ = ∥ψϵ ◦ f̂2∥ ≤ ∥ψϵ∥∥f̂2∥ = 1,

and

1 = ψ̂(φ0) ≤ ∥ψ̂∥,

implies that ∥ψ̂∥ = ψ̂(φ0) = 1. Finally, by (2.4) and (2.5), we have

ψϵ(δD) ⊆ ϵ2D,

and

ψϵ(f̂2(∂SH
∞ \ U)) ⊆ ψϵ(ϵ

′D),

respectively, and hence

ψ̂ (∂SH
∞ \ U) = ψϵ(f̂2(∂SH

∞ \ U))
⊆ ψϵ(ϵ

′D)
⊆ ψϵ(δD)

⊆ ϵ2D
⊆ ϵD.

Therefore, if φ ∈ M(H∞), then the estimate

|ψ̂(φ)|+ (1− ϵ)|1− ψ̂(φ)| = |ψϵ(φ(f2))|+ (1− ϵ)|1− ψϵ(φ(f2))|
≤ 1,

completes the proof of the lemma. �

The statement and part of the proof of Lemma 2.1 are motivated by Urysohn-type lemma

of [12, Lemma 2.5] (also see [24, Lemma 3]). For instance, the uses of Stolz domains follow

the constructions of [12, 24]. Also, see the proof of Bollobás [9] for a similar (but not exactly

the same) construction in the setting of R2. However, as one would expect, the algebraic and

analytic tools of the maximal ideal space of H∞ play a key role in the present consideration.
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3. Proof of the main theorem

The purpose of this section is to present the proof of Theorem 1.4. In addition to Lemma

2.1, the proof also needs one more lemma. We begin with some basic definitions and results

from topology.

A topological space X is extremally disconnected if the closure of every open set in X

is open. Also recall that extremally disconnected, compact and Hausdorff spaces are called

Stonean spaces. The Stone-Čech compactification of a discrete space is a typical example of

Stonean spaces. A compact and Hausdorff space X is Stonean if and only if X is a retract of

the Stone-Čech compactification of a discrete space (cf. [31, Theorem 24.7.1]).

Lemma 3.1. Let f ∈ H∞(D), φ0 ∈ ∂SH
∞, and let 0 < ϵ < 1. Define the sub-basic open

subset U of ∂SH
∞ around φ0 by

U = {φ ∈ ∂SH
∞ : |φ(f)− φ0(f)| < ϵ}.

Then U contains an isolated point of ∂SH
∞.

Proof. Since ∂SH
∞ is a closed subset of M(H∞), it follows that ∂SH

∞ is a compact and

Hausdorff space. By [19] we know that ∂SH
∞ is an extremally disconnected space. Therefore,

∂SH
∞ is a Stonean space.

Observe that

U = {φ ∈ ∂SH
∞ : |φ(f)− φ0(f)| ≤ ϵ}.

If U is a finite set, then using the Hausdorff property of ∂SH
∞, we get that U contains an

isolated point. Next we assume that U is an infinite set. By the discussion preceding the

statement of this lemma, ∂SH
∞ is a retract of βX for some discrete space X. Here U is a

clopen set in ∂SH
∞. Since βX is an extremally disconneted space, the topology of βX is

generated by clopen sets [22, Theorem 3.18]. Hence, there exists a clopen set V in βX such

that

U = V ∩ ∂SH∞,

and we conclude that U is an infinite closed subset of βX. Therefore

U ⊆ ∂SH
∞ ⊆ βX.

Now, by [23, Lemma 4] (or [20, p. 137]), there exists a subspace Y ⊆ U such that

Y = F (βN),

for some homeomorphism F . Consequently

Y ⊆ U ⊆ ∂SH
∞ ⊆ βX.

Consider inclusion maps i1 : Y −→ U , i2 : U −→ ∂SH
∞, and i3 : ∂SH

∞ −→ βX. We have

the map

F̃ := i3 ◦ i2 ◦ i1 ◦ F : βN −→ βX.

Since F̃ is continuous, it follows that Y is compact in βX, which implies, in particular, that

Y is closed in βX. Thus we conclude that Y ∼= βN is identical with the closure in βX of N.
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Consequently (cf. [20, p. 89] or [23, page 37]), we have that N ⊆ X is C∗-embedded. Since

every point of X is isolated in βX, we conclude that every point of N is isolated in βX. In

summary, we have the following:

N ⊆ Y ∼= βN ⊆ U ⊆ ∂SH
∞ ⊆ βX.

It is now clear that every point of N is isolated in ∂SH
∞. This implies that U contains an

isolated point of ∂SH
∞, and completes the proof of the lemma. �

We fix some more notation before proceeding to the main result. Recall that the Gelfand

map Γ : H∞ → C(M(H∞)) is an isometry, and Ĥ∞ := Γ(H∞). For each X ∈ B(H∞),

define X̃ : Ĥ∞ → Ĥ∞ by

X̃ = ΓXΓ−1.

Therefore, X̃f̂ = X̂f for all f̂ ∈ Ĥ∞. Moreover, since Γ is an isometry, it follows that

∥X̃f̂∥ = ∥ΓXΓ−1(f̂)∥ = ∥XΓ−1f∥ = ∥Xf∥ (f ∈ H∞),

and

∥X̃∥ = sup
f̂∈Ĥ∞,∥f̂∥=1

∥X̃f̂∥ = sup
f∈H∞,∥f∥=1

∥Xf∥ = ∥X∥.

Now we are ready to prove the main theorem of this paper. However, for the reader’s con-

venience, we restate Theorem 1.4 by incorporating the definition of Bishop-Phelps-Bollobás

property (see Definition 1.3).

Theorem 3.2. Let f0 be a unit vector in H∞, T ∈ B(H∞), and let ϵ ∈ (0, 1). Suppose

∥T∥ = 1 and

∥Tf0∥ > 1− ϵ

2
.

Then there exist N ∈ B(H∞) and a unit vector g0 ∈ H∞ such that

(1) ∥Ng0∥ = ∥N∥ = 1,

(2) ∥f0 − g0∥ < 2
√
ϵ, and

(3) ∥T −N∥ < 7
√
ϵ.

Proof. By the assumption that ∥Tf0∥ > 1− ϵ
2
, it follows that

∥T̂ f0∥ = ∥Tf0∥ > 1− ϵ

2
.

Then there exists φ0 ∈ ∂SH
∞ ⊆ M(H∞) (recall that ∂SH

∞ is the Šilov boundary for H∞)

such that

|T̂ f0(φ0)| = ∥T̂ f0∥ > 1− ϵ

2
.

Since φ0 ∈ M(H∞), it follows that ∥φ0∥ = 1, and hence ∥φ0 ◦ T∥ ≤ 1 and

|φ0(T (f0))| = |(φ0 ◦ T )f0| = |T̂ f0(φ0)| > 1− ϵ

2
.

We claim that there exist an isolated point φ̃0 ∈ ∂SH
∞ such that

|φ̃0(Tf0)| > 1− ϵ.
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If φ0 itself is an isolated point of ∂SH
∞, then we can choose φ̃0 = φ0. Suppose φ0 is not an

isolated point of ∂SH
∞. Since ∂SH

∞ is extremally disconnected, it follows that

W :=
{
φ ∈ ∂SH

∞ : |φ(Tf0)− φ0(Tf0)| ≤
ϵ

4

}
.

is a clopen set. By Lemma 3.1, there exists φ̃0 ∈ W such that φ̃0 is an isolated point of

∂SH
∞. Then

|φ̃0(Tf0)| ≥|φ0(Tf0)| − |φ0(Tf0)− φ̃0(Tf0)|

>1− ϵ

2
− ϵ

4
>1− ϵ.

Then applying the Bishop-Phelps-Bollobás theorem (cf. Theorem 1.2) to the linear functional

1

∥φ̃0 ◦ T∥
φ̃0 ◦ T : H∞ → C,

we immediately get a linear functional φ1 : H
∞ → C, ∥φ1∥ = 1, and a unit vector g0 ∈ H∞

(that is, ∥g0∥∞ = 1) such that

(i) |φ1(g0)| = 1,

(ii) ∥g0 − f0∥ ≤
√
2ϵ < 2

√
ϵ, and

(iii)

∥∥∥∥φ1 −
φ̃0 ◦ T

∥φ̃0 ◦ T∥

∥∥∥∥ ≤
√
2ϵ < 2

√
ϵ.

As we already know that φ̃0 is an isolated point of ∂SH
∞, there exists an open set U ⊆

M(H∞) such that

U ∩ ∂SH∞ = {φ̃0}.
Since φ̃0 ∈ U ∩ ∂SH∞, by Lemma 2.1 there exists ψ̂ ∈ Ĥ∞ such that

(a) ∥ψ̂∥ = 1 = ψ̂(φ̃0),

(b) sup{|ψ̂(φ)| : φ ∈ ∂SH
∞ \ U} < ϵ, and

(c) |ψ̂(φ)|+ (1− ϵ)|1− ψ̂(φ)| ≤ 1 for all φ ∈ M(H∞).

With (c) in mind, we introduce a bounded linear operator Ñ : Ĥ∞ → Ĥ∞ defined by

(Ñ f̂)(φ) = ψ̂(φ)φ1(f) + (1− ϵ)(1− ψ̂(φ))(T̃ f̂)(φ),

for all f̂ ∈ Ĥ∞ and φ ∈ M(H∞). We claim that ∥Ñ∥ = 1. Indeed, for each f̂ ∈ Ĥ∞ with

∥f̂∥ ≤ 1 and φ ∈ M(H∞) we have∣∣∣(Ñ f̂)(φ)∣∣∣ ≤ |ψ̂(φ)||φ1(f)|+ (1− ϵ)|1− ψ̂(φ)||(T̃ f̂)(φ)|

≤ |ψ̂(φ)|+ (1− ϵ)|1− ψ̂(φ)|
≤ 1,

where the last inequality follows from (c) above. This implies, of course, that ∥Ñ∥ ≤ 1. On

the other hand, by (i) and (a), we have

|Ñ(ĝ0)(φ̃0)| = |φ1(g0)||ψ̂(φ̃0)|+ 0 = 1.
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This, together with ∥Ñ∥ ≤ 1, implies that ∥Ñ∥ = 1 and proves the claim. We now estimate

∥T̃ − Ñ∥. For each f̂ ∈ Ĥ∞ with ∥f̂∥ ≤ 1, we have

∥T̃ f̂ − Ñ f̂∥ = sup
φ∈∂SH∞

∣∣∣(T̃ f̂)(φ)− φ1(f)ψ̂(φ)− (1− ϵ)(1− ψ̂(φ))(T̃ f̂)(φ)
∣∣∣

= sup
φ∈∂SH∞

∣∣∣ϵ(1− ψ̂(φ))(T̃ f̂)(φ) + ψ̂(φ)(T̃ f̂)(φ)− φ1(f)ψ̂(φ)
∣∣∣

≤ ϵ sup
φ∈∂SH∞

|1− ψ̂(φ)||(T̃ f̂)(φ)|+ sup
φ∈∂SH∞

|ψ̂(φ)(φ1(f)− (T̃ f̂)(φ))|

≤ 2ϵ+ sup
φ∈∂SH∞

|ψ̂(φ)||φ1(f)− (T̃ f̂)(φ)|,

as ∥ψ̂∥ = 1 (see (a)) and ∥T̃ f̂∥ ≤ 1. We rewrite ∂SH
∞ as

∂SH
∞ = ((M(H∞) \ U) ∩ ∂SH∞) ∪ (U ∩ ∂SH∞).

In view of this partition, we have

sup
φ∈∂SH∞

|ψ̂(φ)||φ1(f)− (T̃ f̂)(φ)| ≤ sup
φ∈(M(H∞)\U)∩∂SH∞

|ψ̂(φ)||φ1(f)− (T̃ f̂)(φ)|

+ sup
φ∈U∩∂SH∞

|ψ̂(φ)||φ1(f)− (T̃ f̂)(φ)|.

We further estimate the second term of the right-hand side, say α, as follows:

α = sup
φ∈U∩∂SH∞

|ψ̂(φ)||φ1(f)− (T̃ f̂)(φ)|

= |ψ̂(φ̃0)||φ1(f)− T̂ (f)(φ̃0)|

= |ψ̂(φ̃0)||φ1(f)− φ̃0(Tf)|

≤
∣∣∣∣φ1(f)−

(φ̃0 ◦ T )(f)
∥φ̃0 ◦ T∥

∣∣∣∣+ ∣∣∣∣(φ̃0 ◦ T )(f)
∥φ̃0 ◦ T∥

− (φ̃0 ◦ T )(f)
∣∣∣∣ .

By (iii), we have

α < 2
√
ϵ∥f∥+ |1− ∥φ̃0 ◦ T∥| ∥f∥

< 2
√
ϵ+ ϵ

≤ 3
√
ϵ,

where the last inequality follows from the fact that

∥φ̃0 ◦ T∥ ≥ |(φ̃0 ◦ T )f0| > 1− ϵ.

Finally, (b) implies that

sup
φ∈(M(H∞)\U)∩∂SH∞

|ψ̂(φ)| < ϵ,

and hence

sup
φ∈(M(H∞)\U)∩∂SH∞

|ψ̂(φ)|
∣∣∣φ1(f)− (T̃ f̂)(φ)

∣∣∣ ≤ sup
φ∈(M(H∞)\U)∩∂SH∞

ϵ
∣∣∣φ1(f)− (T̃ f̂)(φ)

∣∣∣
≤ 2ϵ.
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This, combined with the above estimates, then implies that ∥T̃−Ñ∥ < 7
√
ϵ. Then N : H∞ →

H∞ defined by N = Γ−1ÑΓ satisfies all the required conclusions of the theorem. �

As already pointed out in Theorem 1.4, the above theorem also yields the value of β and

γ in Definition 1.3 as β(ϵ) = 2ϵ
7
and γ(ϵ) = 1

2

(
ϵ
7

)2
, ϵ > 0.

4. Concluding remarks

In this section, we present an application of our approach to the Bishop-Phelps-Bollobás

property of operator ideals of B(H∞) and make a couple of remarks. We begin with operator

ideals of B(H∞). Recall that a subset I (X) ⊆ B(X) is called an operator ideal if I (X)

contains all finite rank operators and

T1 ◦ T ◦ T2 ∈ I (X),

for all T ∈ I (X) and T1, T2 ∈ B(X).

Corollary 4.1. Let I (H∞) be an operator ideal. Let f0 be a unit vector in H∞, T ∈ I (H∞),

and let ϵ ∈ (0, 1). Suppose ∥T∥ = 1 and

∥Tf0∥ > 1− ϵ

2
.

Then there exist N ∈ I (H∞) and a unit vector g0 ∈ H∞ such that

(1) ∥Ng0∥ = ∥N∥ = 1,

(2) ∥f0 − g0∥ < 2
√
ϵ, and

(3) ∥T −N∥ < 7
√
ϵ.

Proof. Define I∞ := {ΓWΓ−1| W ∈ I (H∞)}. Clearly I∞ contains all finite rank operators.

Let W̃1 and W̃2 are in B(Ĥ∞) and W ∈ B(H∞). Then

W̃1ΓWΓ−1W̃2 = ΓW1Γ
−1ΓWΓ−1ΓW2Γ

−1 = ΓW1WW2Γ
−1 ∈ I∞,

implies that I∞ is an operator ideal of B(Ĥ∞). In particular, T̃ ∈ I∞. Now, if we view T

as a bounded linear operator on H∞, then applying Theorem 3.2 to T ∈ I (H∞), we see that

the corollary follows except for the fact that N ∈ I (H∞). It is therefore enough to prove

that N ∈ I (H∞), where N ∈ B(H∞) corresponds the operator Ñ : Ĥ∞ → Ĥ∞ defined by

(see the proof of Theorem 3.2)

(Ñ f̂)(φ) = φ1(f)ψ̂(φ) + (1− ϵ)(1− ψ̂(φ))(T̃ f̂)(φ),

for all f̂ ∈ Ĥ∞ and φ ∈ M(H∞). Since N = Γ−1ÑΓ, we only need to prove that Ñ ∈ I∞.

To this end, we write Ñ = Ñ1 + Ñ2, where

Ñ1f̂ = φ1(f)ψ̂ and Ñ2f̂ = (1− ϵ)(1− ψ̂)T̂ f̂ ,

for all f̂ ∈ Ĥ∞. In view of the fact that I∞ is an ideal, we simply prove that Ñ1 and Ñ2

are in I∞. Evidently, Ñ1 is a rank one operator, and hence Ñ1 ∈ I∞. On the other hand,

T̃ ∈ I∞ implies that Ñ ∈ I∞, which completes the proof of the corollary. �
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In particular, this applies equally to common operator ideals, like the ideal of weakly

compact operators and the ideal of p-summing operators of B(H∞). As an example, let us

state the weakly compact operator ideal version of the above corollary.

Given a Banach space X, we denote the closed unit ball {x ∈ X : ∥x∥ ≤ 1} as BX . Recall

that a bounded linear operator T ∈ B(X) is called weakly compact if T (BX) is relatively

weakly compact. We denote by W (X) the space of all weakly compact operators on X.

The following result is now a particular case of the above corollary. Note that the present

formulation is precisely the weakly compact variant of Bishop-Phelps-Bollobás property for

compact operators analyzed by Dantas, Garćıa, Maestre and Mart́ın in [16].

Corollary 4.2. Let f0 be a unit vector in H∞, T ∈ W (H∞), and let ϵ ∈ (0, 1). Suppose

∥T∥ = 1 and

∥Tf0∥ > 1− ϵ

2
.

Then there exist N ∈ W (H∞) and a unit vector g0 ∈ H∞ such that

(1) ∥Ng0∥ = ∥N∥ = 1,

(2) ∥f0 − g0∥ < 2
√
ϵ, and

(3) ∥T −N∥ < 7
√
ϵ.

A similar statement holds if we replace W (H∞) by the ideal of p-summing operators of

B(H∞). We refer the reader to [17, Chapter 2] for p-summing operators on Banach spaces.

Now we comment on Asplund spaces. Recall that a Banach space X is called an Asplund

space if, whenever g is a convex continuous function on an open convex subset V of X, the set

of all points of V where g is Fréchet differentiable form a dense Gδ-subset of V . This notion

was introduced by Asplund under the name strong differentiability space [7]. The following

fundamental theorem gives a satisfactory classification of Asplund spaces [28, 32]:

Theorem 4.3. Let X be a Banach space. Then the following conditions are equivalent:

(1) X is an Asplund space;

(2) X∗ has the Radon-Nikody̌m property;

(3) every separable subspace of X has a separable dual.

We refer to [18] for the notion of Radon-Nikody̌m property. We now remark that the disc

algebra A(D) (a subalgebra of H∞) consisting of bounded analytic functions that are contin-

uous on D is separable. However, its dual A(D)∗ is nonseparable. Consequently, Theorem 4.3

implies that H∞ is not Asplund. Therefore, Theorem 3.2, that is, the Bishop-Phelps-Bollobás

property for B(H∞) does not follow from the existing theory of Asplund spaces (cf. [12]). For

more information and recent development on Asplund spaces, we refer the reader to [10, 14].
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